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Studies investigating the consequences of future climate changes on species distributions usually start with the
assumption that species respond to climate changes in an individualistic fashion. This assumption has led researchers to
use bioclimate envelope models that use present climate-range relationships to characterize species’ limits of tolerance to
climate, and then apply climate-change scenarios to enable projections of altered species distributions. However, there
are techniques that combine climate variables together with information on the composition of assemblages to enable
projections that are expected to mimic community dynamics. Here, we compare, for the first time, the performance of
GLM (generalized linear model) and CQO (canonical quadratic ordination; a type of community-based GLM) for
projecting distributions of species under climate change scenarios. We found that projections from these two methods
varied both in terms of accuracy (GLM providing generally more accurate projections than CQO) and in the broad
diversity patterns yielded (higher species richness values projected with CQO). Model outputs were also affected by
species-specific traits, such as species range size and species geographical positions, supporting the view that methods are
sensitive to different degrees of equilibrium of species distributions with climate. This study reveals differences in
projections between individual- and community-based approaches that require further scrutiny, but it does not find
support for unsupervised use community-based models for investigating climate change impacts on species distributions.
Reasons for this lack of support are discussed.

Studies using models to investigate the consequences of
future climate changes on species distributions often start
with the assumption that species respond to climate
changes in an individualistic fashion. In other words, that
complex community dynamics, or simpler biotic depen-
dencies between pairs of species, are not important at the
grand scale in which global environmental changes operate.
The assumption that species respond individualistically to
climate changes has received support from analysis of the
fossil record (reviewed by Graham and Grimm 1990).
For example, analysis of pollen cores shows that even when
species composition remains relatively stable through time,
abundances change significantly and non-analogue com-
munities can emerge (Williams et al. 2001, Simakova
2006). There is also evidence of individualistic responses
of species from short-term experimental manipulations
of climatic variables (McGeoch et al. 2006). Despite
an abundant literature supporting the predominance of
individualistic species responses to climate changes, the
topic remains controversial (Callaway 2007). Proponents
of community responses of species to climate changes

highlight that synchronous dynamics of organisms in the
fossil record have been reported. For example, Labandeira
and co-workers argued that major extinctions of flowering
plants were followed by the decline in the diversity of
insects during the middle to late Pennsylvanian extinctions,
during the Permian event and at the Cretaceous/Tertiary
boundary (Labandeira 2002, Labandeira et al. 2002).
Others have reported cases of stability in the composition
of assemblages over time (Lyons 2003). Developments in
community ecology have also demonstrated that biotic
interactions (namely positive interactions) can affect
species’ ability to adapt to changes in their environment.
For example, Jordano (2000) suggests that�90% of
tropical plant species rely on animals for the dispersal of
their seeds. Should these animals be removed from the
system, plants would find it extremely difficult to track
climate changes through dispersal. Simulation (Koh et al.
2004, Travis et al. 2005) and modelling studies (Araújo
and Luoto 2007) provided additional support for the idea
that simple biotic interactions have an important role
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in either facilitating or preventing adaptation of species to
climate change.

Modifying individual species distributions models to
account for complex biotic interactions is far from trivial
(Araújo and Luoto 2007, Heikkinen et al. 2007). Indeed,
it requires information on the biology of organisms that is
either unavailable or available for specific case studies alone.
An alternative approach involves the statistical analysis
of species co-occurrence in environmental space. This
approach has been termed community-based modelling
of species distributions (Ferrier et al. 2002). Community
modelling relates distributions of multiple species to sets of
environmental variables and produces an analysis of the
collective properties of species distributions (Ferrier and
Guisan 2006). It is implicit to these methods that statistical
patterns of co-occurrence (and co-exclusion) among species
capture meaningful biotic interactions among species,
thereby providing a useful tool for modelling community
dynamics.

Although community-based models have been pre-
viously weighted against individual species distribution
models, comparisons have been performed for models
projecting distributions in the same region (and time)
where data were sampled (Leathwick et al. 2005, Elith et al.
2006, Chatfield 2008). As widely acknowledged, though,
climate change poses challenges of generality (making
useful predictions beyond the training data) rather than
precision (making accurate predictions within the training
data) (Guisan and Zimmermann 2000), which is the
criterion usually used for benchmarking of the species
distribution models (Araújo and Rahbek 2006). Therefore,
it is possible that models thought to be robust for
a particular application (Segurado and Araújo 2004, Elith
et al. 2006, Meynard and Quinn 2007, Tsoar et al. 2007)
might provide poor results for others (see Araújo et al.
2005, or the recent debate between Peterson et al. 2007,
and Phillips 2008). Here, we provide a first comparison of
community and individual-based models, using techniques
based in generalized linear models (GLM), for forecasting
changes in the potential distributions of species under
climate change. In particular we examine: 1) whether
projections made with a particular implementation of
community-based models differ, in terms of accuracy,
from equivalent individualistic models. 2) Whether differ-
ences in accuracy of community vs individualistic models
can be associated with species-specific traits, such as range
size and geographical position. 3) Whether differences in
projected species richness and assemblage composition exist
and, if so, whether strong biological explanations for these
divergent patterns can be inferred.

Materials and methods

Biological data and environmental predictors

For this study, 158 native tree species and subspecies
distributed across Europe were considered. This covers
most of the important timber taxa of Europe, including
most gymnosperm softwoods (Pinales and Taxales) and
some hardwoods (Myricales, Malpighiales, Rosales, Juglan-
dales and Fagales) (Humphries et al. 1999). Trees were

chosen because: 1) their distribution and ecology is
relatively well known compared with other plant taxa;
2) their richness is correlated (Spearman correlation
r�0.80, pB0.001) with the overall richness of the Atlas
Flora Europaeae (AFE) data set (Araújo and Williams
2000); and 3) they are long-lived organisms and their
distribution is relatively stable in comparison with some
other groups. The species and subspecies presence�absence
data are a subset of AFE (Jalas and Suominen 1972�1996),
which was digitized by Lahti and Lampinen (1999). Data
are located in 4419 UTM (Universal Transverse Mercator)
50�50 km grid cells. We used only 2130 grid cells,
excluding most of the eastern European countries (except
for the Baltic States) because of low recording efforts in
these areas (Williams et al. 2000). Taxa occurring inB25
grid cells were excluded from analyses to avoid problems of
modelling species with small sample sizes (Stockwell and
Peterson 2002); the reduced dataset comprised 119 taxa
(Supplementary material Appendix 1) that are referred as
‘‘species’’ throughout the text for simplicity.

For this study, we were limited to the use of two
environmental predictor variables (see explanation below).
In order to select the two variables, we started with the
analysis of a larger set of variables that are often considered
in studies modelling distributions of trees and other plant
species (Thuiller et al. 2003): GDD (growing degree days);
TANN (mean annual temperature); MTC (mean tempera-
ture of the coldest month); MWC (mean temperature of
the warmest month); A2P (mean ratio of annual actual
evapotranspiration over annual potential evapotranspira-
tion); PANN (mean annual precipitation sum); PSPR
(mean annual spring precipitation); PSUM (mean annual
summer precipitation); PAUT (mean annual autumn
precipitation); PWIN (mean annual winter precipitation);
and RANN (annual solar long-wave radiation). The eleven
predictor variables were analysed with PCA (principal
components analysis). The first two components accounted
for 86% of the variance. Examining the component
loadings of the environmental variables, we selected the
two variables most correlated with first two PCA compo-
nents: GDD (component 1 loading��0.97) and PANN
(component 2 loading�0.95). Therefore, GDD and
PANN were used to fit the models and to project species
distributions under present (high resolution climatic data
for 10’ quadrats; New et al. 2002), and future climatic
conditions (scenario A1 of the HadCM3 GCM for 2050
and 2080; Schröter et al. 2005).

Selection of the community-based model used

There are several methods that allow exploring assemblage-
level interactions in species distribution models.
Approaches include GDM (generalized dissimilarity mod-
elling; Ferrier et al. 2007), MARS-community (multiple
adaptive regression splines adapted for community mo-
delling; Leathwick et al. 2005), CQO (canonical quadr-
atic ordination; Yee 2004), and CAO (canonical additive
ordination; Yee 2006). GDM models compositional
dissimilarity in assemblages and have been successfully
used as a pre-processing step for modelling species
distributions (Ferrier et al. 2007). However, GDM, itself,
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was not conceived to make projections for individual
species distributions. MARS-community uses non-linear
relationships and identifies the combination of environ-
mental variables best able to project the occurrence of the
component species. MARS has been shown to make precise
projections within a training set (Moisen and Frescino
2002), but its ability to make useful projections under
climate change remains untested. CQO and CAO explicitly
account for co-occurrence and exclusion patterns as other
ordination techniques, while enabling projections of the
distribution of each species. CQO is fitted with GLM
(generalized linear model) and assumes quadratic responses
of species to predictor environmental variables. CAO does
not make a priori assumptions about the shape of the
species responses to the environmental predictors and is
fitted with GAM (generalized additive model). After
carefully considering the alternative options, we decided
to use CQO for three reasons. First, results are easily
interpretable. Second, CQO uses quadratic responses of
species to environmental predictors, which are well rooted
in the ecological theory (Austin 2002). Third, the current
implementation of the CQO allows fitting two latent
predictor variables to models (Rank-2 CQO), whereas
CAO only allows fitting one latent variable (Rank-1 CAO).
Since species distributions are best modelled with respect
to, at least, two variables (one reflecting the available
energy and the other the available water), CQO was
preferred over CAO.

Given that our objective was to compare community-
based versus individual distribution models, we were
careful to avoid differences in model outputs that could
be attributed to slightly different combinations of
environmental predictors in models. This would happen,
for example, if we used latent variables summarised with
principal component analysis, as the structure of the
correlation matrix would naturally change when climate
variables were projected into the future. To avoid this
problem, we identified two orthogonal variables (with
PCA, see above), thought to be ecologically meaningful,
and fitted these variables to 1) individual distribution
models for each species (referred as GLM throughout the
text) and 2) a community-based model simultaneously
including all the species in a Rank-2 CQO model
(referred as CQO throughout the text). CQO identifies
a set of orthogonal latent variables from a combination of
several variables. By using only two orthogonal variables
we ensured that the latent variables were equivalent to the
individual variables entering the model. With this
procedure we ensured that differences between the
Rank-2 CQO and GLM models could only be attribu-
table to the co-occurrence/exclusion patterns (Fig. 1).

GLM model

Species distributions were modelled using GLM with
binomial errors, logit link and quadratic functions.
Response variables were species occurrence records and
predictor variables were GDD and PANN (for more details
see R script in Supplementary material Appendix 1). No
variable selection was implemented and quadratic and

linear terms of GDD and PANN were automatically
included in models for all species in order to allow full
comparability with CQO. The functions fitted using the
complete dataset were used to project the species distribu-
tions under current and future (2050 and 2080) climates.

CQO model

We first tested how well the quadratic functions described
the species responses to the environmental predictors, by
fitting both Rank-1 CAO and CQO and visually compar-
ing the response curves (Fig. 2). We found that quadratic
functions described reasonably well species responses to
environmental predictors (most species have a bell-shaped
response curve), thus lending support for our choice of
using CQO rather than CAO. A Rank-2 CQO was fitted
to the occurrence of the 119 species, using binomial errors,
logit link and GDD and PANN as predictor variables (for
more details see R script in Supplementary material
Appendix 2). As with GLM, the functions fitted with
CQO were used to project the species distributions under
current and future (2050 and 2008) climates.

Model verification

In most studies investigating climate change impacts on
species distributions, independent data for evaluation of the
models are difficult to obtain (Araújo et al. 2005). When
this is the case, alternative approaches are required for
assessing models performance. One approach is to intern-
ally evaluate models (i.e. verify them), by measuring how
well predictions fit the calibration data or, preferably, a
subset of the calibration data withheld for evaluation of the
models (Araújo and Guisan 2006). When data are split into
calibration and evaluation, the measured accuracy of the
models may be affected by how data were initially split. To
account for such sensitivity in model outcomes, models
were cross-validated 10 times. Splitting of the data was
done randomly and the size of the random splits was
determined by application of a commonly used heuristic
for identifying the ratio of calibration and cross-validation
sets in presence and absence models: [1�(p�1)1/2]�1,
where p is the number of predictors (Fielding and Bell
1997). Since species prevalence is highly correlated with the
cut-off value that minimizes the difference between
sensitivity (the probability that the model will correctly
classify a presence) and specificity (probability that the
model will correctly classify an absence) (Liu et al. 2005,
Jiménez-Valverde and Lobo 2006), we used the prevalence
of each species in the calibration set as a cut-off for
converting the projected probabilities into presence-absence
scores (see also Araújo and Luoto 2007). Model sensitivity,
specificity and Kappa statistic were calculated for all species
and for each method (i.e. GLM and CQO, for more details
see R script in Supplementary material Appendix 2) and for
each one of the 10 cross-validation datasets using the
PresenceAbsence package (Freeman 2007). Comparison of
Kappa statistic values across species is problematic because
this measure is affected by prevalence (Allouche et al.
2006). However, it is an appropriate method to test for
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differences across modelling methods for the same species.
The t statistic for dependent samples was used to assess for
significant differences in sensitivity, specificity and Kappa
between GLM and CQO, for each species. The t values

were then regressed against range size (logarithm of the area
in km2) and mean latitude of each species to assess for
species-specific trends in the performance of each modelling
method.

Figure 1. Projections of Quercus frainetto using individualistic (GLM) and community-based (CQO) response models. Red ovals indicate
regions where CQO predicts the presence of Q. frainetto and GLM predicts its absence; red squares indicate regions where GLM predicts
the presence of Q. frainetto and CQO predicts its absence. Two alternative projections with CQO are provided: one with Q. pyrenaica as
covariate in the models and the other with Q. robur as a covariate.
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Comparison between model projections

The GLM and CQO models fitted to the complete dataset
were used to project the probability of occurrence of each
species under present and future (2050 and 2080) climatic
conditions (see above). The projected probabilities were
converted into presence and absence using the prevalence
of each species as the threshold for conversion. Differences
between model projections were investigated at both the
individual species level (comparing measures of model
accuracy across methods using cross-validated samples) and
the assemblage level. Assemblage variation can be examined
both in terms of the numbers of species (species richness)
and the identity of species (species composition) present in
any location (Harrison et al. 1992, Baselga et al. 2007).
Thus, we compared differences in modelled patterns of
species richness and assemblage composition (dissimilarity)
obtained with community and individualistic methods.

Species richness was computed for each method (SGLM

and SCQO) as the sum of all presences projected in each cell.
The difference between both values (DS�SCQO�SGLM)
was mapped and regressed against geographical coordinates
(longitude and latitude) and environmental predictors
(GDD and PANN) to assess for geographical and environ-
mental trends in models. To examine differences in species
composition, we computed the Simpson’s index of dissim-
ilarity (Koleff et al. 2003) between the assemblages
projected with GLM and CQO in each cell. The Simpson’s
index of dissimilarity (bsim) was preferred because it is
independent of differences in richness between samples
(Baselga 2007); DS and bsim are two methodologically
independent measures capturing complementary informa-
tion on the differences between assemblages projected by
GLMs and CQO.

Results

Model accuracy

The fitted models were moderately accurate, with sensitiv-
ity ranging from 0.67 to 1.00 with GLMs (mean9SD:
0.8690.06) and 0.57 to 1.00 with CQO (mean9SD:
0.8390.08). Specificity ranged from 0.53 to 0.96 in
GLMs (mean9SD: 0.7690.09) and 0.57 to 0.94 in
CQO (mean9SD: 0.7590.09). The tendency for GLM
to have higher sensitivity values than CQO, and for CQO
to have higher specificity than GLM was significant for the
majority of species, though differences in performance
between models were greater for sensitivity than for
specificity (pB0.05, Table 1). A tendency for improved
performance of GLM over CQO was maintained when
kappa values, that weight sensitivity and specificity equally,
were used for benchmarking of the models (Table 1).

Differences in the relative performance of methods
were significantly related to geographical properties of
species ranges. Using t statistics accounting for differences
between the two methods, we found that species’ range size
was negatively related with the t static accounting for
differences in sensitivity between methods (Pearson
r��0.37, pB0.001). In other words, sensitivity obtained
with CQO models was higher among restricted range
species than GLM, whereas GLM had higher sensitivity
values than CQO among wide-ranging species. When the
same test was used to examine differences in specificity and
kappa between methods, we found a significant negative
relationship between latitude of the centroid of species
distributions and the t statistic accounting for differences in
specificity and kappa (r��0.40, pB0.001 and r��
0.43, pB0.001, respectively). This shows that specificity
and kappa values were higher for CQO than for GLM in
southerly distributed species, whereas the reverse pattern
was recorded for northerly distributed species. All other
assessed relationships between t statistics and geographical
characteristics of species were not significant (i.e. p�0.05).

Model projections

Current species richness (S), as projected with CQO, was
significantly higher than projected richness with GLM

Figure 2. Response curves of 119 tree species against a latent
climatic variable. Response curves were estimated with Rank-1
CAO (canonical additive ordination) and CQO (canonical
quadratic ordination).
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(mean DS�3.00; SD�4.60; t�112.91, pB0.001),
although this relationship was not constant across geogra-
phical and environmental space (Fig. 3). DS was positively
and significantly related to latitude (R2�0.16, pB0.001)
and longitude (R2�0.12, pB0.001), as well as to
quadratic functions of GDD (R2�0.09, pB0.001) and
PANN (R2�0.20, pB0.001). A complete environmental
model composed by the second order polynomial for
GDD and PANN accounted for near a half of the variation
in DS (R2�0.46, pB0.001). With projections for 2050,
areas where GLM projected higher species richness than
CQO were more frequent (Fig. 3), although species
richness projected by CQO was still significantly higher
than that projected by GLM (mean DS�3.46; SD�5.58;
t�106.74, pB0.001). For this period, DS was also
positively and significantly related to latitude (R2�0.29,
pB0.001) and longitude (R2�0.10, pB0.001), as well as
to quadratic functions of GDD (R2�0.32, pB0.001) and
PANN (R2�0.03, pB0.001). A complete environmental
model composed by the second order polynomial for GDD
and PANN accounted for more than half of the variation
in DS (R2�0.54, pB0.001). For 2080, areas where GLM
projected more species than CQO became even more
widespread (Fig. 3) and the general difference between
richness projected by CQO and GLM was still significant
but lower than for previous periods (mean DS�1.22;
SD�5.99; t�35.07, pB0.001). Latitudinal and environ-
mental patterns in DS were more marked, with the GLM
increasing the tendency for projecting higher richness in
lower latitudes. Indeed, for 2080, projected DS was
positively and significantly related to latitude (R2�0.46,
pB0.001) and longitude (R2�0.03, pB0.001), nega-
tively related to GDD (R2�0.51, pB0.001) and posi-
tively related to PANN (R2�0.05, pB0.001). A complete
environmental model composed by GDD, PANN and
their interaction accounted for more than half of the
variation in DS (R2�0.54, pB0.001).

Differences in projected species composition (bsim) with
GLM and CQO did not present a marked geographical
structure (Fig. 4). Although bsim was significantly related
with latitude and longitude (probably due to the extremely
large number of cases) the amount of explained variance
was negligible (R2�0.01, pB0.001 and R2�0.03, pB
0.001, respectively). The same weak relationship was found
with GDD (R2�0.001, pB0.001) but, conversely, bsim

was strongly related to the quadratic function of PANN
(R2�0.69, pB0.001). A complete environmental model
composed by GDD, the quadratic function of PANN, and
their interaction accounted for almost three quarters of the

variation in bsim (R2�0.72, pB0.001). Similar results
were found for 2050 and 2080, for which all the tested
relationships were negligible (all R2B0.05, pB0.001) with
exception of that of PANN (R2�0.61, pB0.001 and
R2�0.30, pB0.001, respectively). A complete environ-
mental model for 2050 composed by GDD, the second
order polynomial of PANN and their interaction accounted
for almost three quarters of the variation in bsim (R2�0.72,
pB0.001). A complete environmental model for 2050
composed by the second order polynomial for GDD and
PANN accounted for nearly two thirds of the variation in
bsim (R2�0.63 pB0.001), whereas the model for 2080
accounted for a third of the variation in bsim (R2�0.34,
pB0.001).

Discussion

Would community-based models improve forecasts
of species distributional change under climate change?
In our study, an approach that modelled individual species
responses to climate provided more accurate projections
than modelling assemblages. Such improved accuracy
shows that GLM was able to fit the data better than
CQO, but it does not necessarily clarify if GLM would
be able to make more useful predictions of range changes
under climate change than CQO (Araújo et al. 2005,
Randin et al. 2006, Peterson et al. 2007). Answering this
question would require independent validation data
that were unavailable to us (Araújo and Rahbek 2006).
However, our results also showed that models including
community interactions differed markedly from models
that do not include them and that differences are
spatially structured. This was true for the three measures
of model accuracy used and, more importantly, for
projected species richness and assemblage composition in
the present and in the future. Generally, it was found that
GLM provided more accurate projections than CQO and
that differences in accuracy between the two methods were
associated with species-specific traits, such as geographical
location and range size. When individual species projec-
tions were combined, in order to estimate the potential
species richness and assemblage composition of areas, the
obtained patterns varied. For example, overall, CQO
tended to predict higher species richness than GLM.
This increase of species richness with community-based
models invites the interpretation that the identification of
patterns of co-existence among species might lead to an
increase in estimated realized niche of species. In contrast
to species richness, projected assemblage composition was
similar between the two methods, with the exception of
areas with cold and wet climates in the northern-west of
Europe where the two approaches projected very different
assemblages.

Accuracy of individual vs community-based models

Few studies have compared individualistic vs community
models. Those that did, provided mixed results (Elith et al.
2006, Leathwick et al. 2006, Chatfield 2008). In our study,
individualistic GLM models had significantly higher

Table 1. Relative accuracy of GLM and CQO models of European
tree species distributions, assessed through t tests for dependent
samples after 10-fold cross validation. Scores are the number of
species (n�119) for which accuracy is significantly higher for any of
the methods considered (pB0.05), or for which there are not
significant differences.

GLM�CQO GLMBCQO n.s.

Sensitivity 71 16 32
Specificity 44 47 28
Kappa 60 15 44
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Figure 3. Differences in species richness (DS) as projected by CQO and GLM for the present and for the future (2050 and 2080), and
environmental correlates of these differences. Negative values (yellow) on the map correspond to cells where GLM project higher species
richness than CQO, whereas positive values (blue) correspond to cells where CQO projects higher species richness than GLM.
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accuracy (with kappa) than CQO for about half of the
species. The improved performance of GLM was related
with its superiority in predicting presences (thus increasing
sensitivity). In contrast, both methods projected absences
accurately (high specificity) for a similar number of species.
Our analysis also revealed that sensitivity among restricted
range species was relatively higher with CQO than with
GLM. Analogous results were found by Leathwick et al.
(2006) for New Zealand freshwater fishes. In their study,
community-based modelling with MARS provided more
accurate projections (with AUC) than individualistic
models for the least prevalent species. Conversely, a study
of demersal fish species in Western Australia (Chatfield
2008), found the opposite pattern, i.e. of relatively lower
AUC and sensitivity values among restricted range species
modelled with community-based approaches.

When investigating the geographical distribution of
accuracy values we also found that specificity values
obtained with CQO were higher than GLM among low-
latitude species. In other words, community-based models
were better at predicting absences in the south of Europe,
where many restricted range species occur. In contrast,
CQO was less effective than GLM in predicting absences
(lower specificity) among widespread species in central and
northern Europe. Spatial patterns of overall model accuracy
followed the pattern of specificity; in other words, kappa
values were higher with CQO among southern species and
GLM provided more accurate projections in central and
northern Europe.

Projected distribution patterns with individual and
community-based models

Community-based models (CQO) consistently projected
higher local species richness than individual (GLM) models.
In other words, by weighting patterns of co-existence
among species, CQO effectively emulates positive relation-
ships among species, ‘‘forcing’’ coexistence in projections of
species niches, and thus leading to higher local species
richness. No clear relationships between simulated increases
of positive interactions (i.e. positive differences in richness
between CQO and GLM, Fig. 3) and environmental
gradients were found. However, both empirical evidence
(Callaway et al. 2002) and simulation experiments (Travis
et al. 2005) have demonstrated a tendency for preponder-
ance of positive interactions in extreme environmental
gradients. If this was true at biogeographical scales,
increased species richness would be expected to occur in
the extreme temperature and precipitation gradients. How-
ever, this expectation was not supported by our analysis.
Even though there was slight tendency for increased species
richness in the higher (colder) latitudes, higher species
richness with CQO was found in intermediate levels of
GDD (proxy for energy) and annual precipitation (proxy
for water availability) (Fig. 3).

In contrast with species richness, where marked geo-
graphical differences between models were recorded, there
was high similarity between assemblages projected with
individualistic and community-based models. Since we
measured assemblage similarity with an index independent
of richness, this means that, for a given cell, the assemblage

projected by one of the methods is almost a subset of the
assemblage projected by the alternate method. In other
words, differences in species richness between individualis-
tic and community-based models are the result of the
inclusion of additional species by any of the two methods,
but the projected assemblages projected in a given cell
rarely include sets of mutually exclusive species.

Lessons for the future � are community-based models
more useful for climate change studies than
individual-based models?

As shown by several authors, model accuracy, as measured
with non-independent evaluation procedures, does not
necessarily equate to predictive accuracy in an independent
setting (Araújo et al. 2005, Randin et al. 2006, Peterson
et al. 2007). Thus one needs to be cautious when
extrapolating conclusions about robustness of models
with non-independent evaluations (Araújo and Rahbek
2006). For example, it would be unwarranted to conclude
that individualistic GLM is superior to community-based
implementations of GLM (i.e. CQO), simply because
GLM tends to fit the data better than CQO. It is the
ability to predict novel situations (model generality), not
the ability to predict the data used for calibration of the
models (model accuracy), or non-independent evaluation
data, that matters in studies examining the potential
impacts of climate change on species distributions. Never-
theless, the mismatch with projections obtained with
community and individualistic models does lend support
to the view that patterns of species co-occurrence and
co-exclusion can affect the predictive power of species
distribution models under climate change (Araújo and
Luoto 2007, Heikkinen et al. 2007). The critical question
is whether differences accrued from using community
models lead to unrealistic projections or whether they
add useful information for improving projections of species
distributional change under climate change?

These are difficult questions that our analyses cannot
fully clarify. Notwithstanding, let us consider the follow-
ing. Firstly, CQO (as well as other community models)
deals with statistical patterns of co-occurrence and co-
exclusion among modelled species, but 1) the biological
significance of these interactions is not explored; and
2) biotic interactions with important interacting taxa
(e.g. pollinators, seeds dispersers, and other plant eating
animals) are usually overlooked because studies are com-
monly performed with similar taxa. Secondly and more
importantly, interactions in community-based models are
explored in the multidimensional space composed of
environmental predictors. In other words, spatial co-
occurrence and co-exclusion patterns are not explicitly
taken into account. This is a serious shortcoming of an
approach that is supposedly modelling communities,
because species interactions occur primarily in geographical
rather than in environmental space. One consequence of
this feature is that spatial patterns derived from vicariant
speciation, competition, or other spatial representations of
biotic interactions are incorporated in community models
only indirectly or partially. For example, although dis-
tributions of Quercus frainetto and Q. pyrenaica are spatially
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Figure 4. Differences in species composition (bsim) projected by CQO and GLM for the present and for the future (2050 and 2080), and
environmental correlates of these differences. Zero values (yellow) correspond to cells where GLM and CQO project identical
communities (measured as Simpson dissimilarity index), whereas positive values (shades of blue) represent cells where both models project
different community composition.
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disjunct in Europe (Fig. 1), the CQO model would not
consider this distribution to represent a pattern of co-
exclusion because the two species co-occur in similar
environments (standard GLM would be no different).
To put it differently, for CQO (and presumably for other
existing community-based model) to represent species
interactions in geographical space, assumptions of equili-
brium of species distributions with climate (i.e. species
occur in areas with suitable environments while being
absent from areas with unsuitable ones) need to be verified.
This is of course a problem, shared with all models that
derive species-environment association from an analysis
of the statistical relationships between variables (as shown
by, Araújo and Pearson 2005, Midgley et al. 2006, Morin
et al. 2008, Svenning et al. 2008).

The benefits of community-based models have been
described as including ‘‘faster processing of species dis-
tributions data, increased power to detect shared patterns of
environmental response across rarely recorded species, and
enhanced capacity to synthesise complex data into a form
more readily interpretable by scientists and decision
makers’’ (Ferrier and Guisan 2006). However, the proper-
ties of these models are not yet fully understood. Their
ability to make useful projections into independent
settings, i.e. different times, regions, or resolutions, has
not been assessed; and differences between alternative
community modelling techniques have not been thor-
oughly tested. Our results show that overall accuracy of
models can be reduced with community-based models, and
that projections under climate change can vary markedly
between individual species response models and models
that are expected to account for community interactions.
Results are, of course, contingent on the studied taxa,
types of interactions considered (e.g. ignoring pollinators,
herbivores, seed dispersers, etc.), and the historical con-
tingencies of Europe, but evidence that community-based
models improve the usefulness of predictions of species
range shift under climate change with regards to indivi-
dualistic response models is still lacking. We suggest that
improving current projections of future species responses to
climate requires modellers to include more ecology into the
models (Austin 2002, Thuiller et al. 2003), to develop
new tools for integration of biotic interactions into models
(Dos Santos et al. 2008), and to measure uncertainties
from models more explicitly (for review see Heikkinen
et al. 2006, Araújo and New 2007). Promising research is
now being undertaken aiming at increasing the realism of
individual species distributions models by explicitly
accounting for population dynamics (Keith et al. 2008)
and complex physiological feedbacks (Rickebusch et al.
2008). The next step will be require an integration of
complex community dynamics into models that already
account for demographic processes as well as physiological
feedbacks.
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Araújo, M. B. and Williams, P. H. 2000. Selecting areas for
species persistence using occurrence data. � Biol. Conserv. 96:
331�345.
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